Genomics & Proteomics (GENPRO) Faculty

Yashi Ahmed, M.D., Ph.D.

Yashi Ahmed, Ph.D.

Yash Ahmed, Ph.D.

Professor of Molecular and Systems Biology

Office: 613 Vail

Phone: 603-646-5240

The evolutionarily conserved Wnt signal transduction pathway directs cell proliferation and differentiation during animal development and tissue homeostasis. Despite the fact that deregulation of Wnt signaling underlies numerous developmental disorders and cancers, including nearly all colorectal cancers, many of these mechanisms remain poorly understood. The long-term goal of research in the Ahmed Lab is to elucidate the mechanisms that activate Wnt signaling during animal development using a Drosophila model and to use this knowledge to identify control points in the pathway susceptible to therapeutic targeting in Wnt-driven diseases.

Website | Email | PubMed Articles

 | Geisel Profile

AMANDA A. AMODEO, Ph.D.

amanda_amodeo.jpg.png

Amanda Amodeo

Assistant Professor of Biological Sciences

Office:  223 Life Sciences Center

Phone:  603-646-9926

My lab seeks to uncover how cell size, zygotic genome activation, chromatin regulation, and the cell cycle come together to regulate early development in the Drosophila embryo. We use a combination of quantitative imaging, cell biology, genetics, genomics, biochemistry, and mathematical modeling to answer questions about how cells sense fundamental biological properties such as their size and developmental stage.

Website | Email | PubMed Articles

Alix Ashare, M.D., Ph.D.

alix_ashare.png

Alix Ashare

Associate Professor of Medicine, and Microbiology and Immunology

Office:  Borwell 508E

Phone:  603-650-5533

My research focuses on the role of lung macrophages in the development and persistence of inflammation in the lung. A major focus of my laboratory is the investigation of potential mechanisms underlying regional heterogeneity of lung inflammation in patients with inflammatory lung diseases, with an emphasis on the investigation of differences in alveolar macrophage function in patients with cystic fibrosis and asthma. Our work involves primary human immune cells isolated from patients with cystic fibrosis and asthma, as well as healthy volunteers and chronic smokers. Currently, my laboratory is particularly interested in how the lung environment impacts resident and recruited macrophage phenotype and function and how these changes in the immune cell may contribute to the non-resolving inflammation seen in patients with CF. In addition to our work in inflammatory lung diseases such as CF, we are investigating the relationship between impaired lipid homeostasis in lung macrophages and viral immunity in individuals who use electronic cigarettes.

Email | Website | PubMed 

James B. Bliska, Ph.D.

james_bliska.jpg

James Bliska

Distinguished Professor of Microbiology and Immunology

Office: 524A Remsen

Phone: 603-
646-5346

My long-term research focus is to understand how bacterial effectors that are secreted into leukocytes trigger pathogenesis or host protection. We study a professional pathogen (Yersinia) that causes disease in healthy humans and two opportunistic pathogens (Burkholderia, Pseudomonas) that cause airway infections in people with cystic fibrosis. The laboratory uses a multidisciplinary approach including genetics, structural biology, cell biology and immunology. Our goals are to answer important questions in the field and inform new strategies for preventing or treating bacterial infections caused by these pathogens.

Email | PubMed Articles

 | Geisel Profile

 | Website

Jennifer Bomberger, Ph.D.

lrd_upitt_jen_bomberger-1-2.jpg

Bomberger

Professor of Microbiology and Immunology

Geisel School of Medicine

Office:  507A Vail

Phone:  

My laboratory's research examines the interaction between bacterial and viral pathogens in the respiratory tract, particularly in the setting of chronic lung diseases, like Cystic Fibrosis (CF). Current studies in the lab are focused on elucidating molecular mechanisms that govern the innate immune induction of biofilm growth in the lung. Translating the laboratory's bench studies to the bedside, our team collaborates with physicians in Otolaryngology and Pulmonary Medicine to examine viral-bacterial interactions in the upper and lower respiratory tracts of patients with chronic lung disease. We use a combination of live-cell imaging, microbiological, cell biological and cutting-edge genomics approaches with the long-term goal of identifying new therapeutic targets to disrupt and/or prevent the chronic Pseudomonas aeruginosa biofilm infections that are so devastating to people with CF.

Email | PubMed Articles  | Geisel Profile

Giovanni Bosco, Ph.D.

giovanni_bosco.png

Giovanni Bosco

Oscar M. Cohn Professor of Molecular and Systems Biology

Office: 609A Vail

Phone: 603-646-5241

We are interested in understanding how nuclear architecture, chromosome morphology and chromatin structure are modified in response to developmental cues and environmental factors. We are also interested in elucidating the molecular mechanisms through which these modifications function and effect specialized cellular processes.


Website | Email | PubMed

 | Geisel Profile

BROCK CHRISTENSEN, PH.D.

brock_christensen.jpg

Brock Christensen

Professor of Epidemiology, and Molecular Systems Biology

Office:  660 Williamson Translational Research Building

Phone:  603-650-1827

Dr. Christensen's research is focused on combining advances in molecular biology, genomics and bioinformatics with the powerful techniques of modern epidemiology and statistics to characterize epigenetic states in human health and disease. His interests include understanding relationships between epigenetic states and exposures in the context of disease susceptibility, occurrence, and progression. By investigating complex interactions between the environment and somatic epigenetic alterations in target tissues, as well as epigenetic susceptibility traits in surrogate tissues, he hopes to develop their potential translational utility for diagnostic, prognostic, and/or treatment purposes.

Website  Email   PubMed Articles

Michael D. Cole, Ph.D.

michael_cole.png

Michael Cole

Professor of Molecular and Systems Biology

633 Rubin

Phone: 603-653-9975 


Our studies that focus on the genetic events involved in the induction of cancer provide an opportunity to define the molecular basis of the disease and to study the regulation and function of important eukaryotic genes that control cell proliferation.

Website | Email 

| Geisel Profile

Robert A. Cramer, Ph.D.

robert_a._cramer.png

Robert A. Cramer

Professor of Microbiology and Immunology

Office: 213 Remsen

Phone: 603-646-5352

Our research group investigates the molecular mechanisms through which the human fungal pathogen Aspergillus fumigatus causes disease in diverse patient populations. We utilize molecular genetics, genomics, biochemistry, microscopy, immunology, and animal model approaches to develop, explore, and test our clinically relevant questions and hypotheses regarding these too often lethal infections.
 Our long-term goal is to translate results from these studies into novel therapeutic advances.

Website | Email | PubMed

 | Geisel Profile

Patrick J. Dolph, Ph.D.

patrick_dolph.png

Patrick Dolph

Associate Professor of Biological Sciences

Office: 351 Life Sciences Center

Phone: 603-646-1092


Our laboratory utilizes Drosophila melanogaster as a model system to study retinal degeneration and molecular mechanisms of cell death.


Email | PubMed Articles

 | Faculty Profile

Jay C. Dunlap, Ph.D.

jay_c._dunlap.png

Jay C. Dunlap

Nathan Smith Professor of Genetics, Professor of Molecular and Systems Biology, Professor of Biochemistry and Cell Biology

Office: 702 Remsen

Phone: 603-646-5247

Work in the Dunlap lab is directed towards understanding circadian biology, the means by which biological clocks operate, are reset by the environment, and control the metabolism of cells. More recently a second effort has nucleated around high throughput functional genomics of filamentous fungi including Neurospora and Aspergillus spp.

No longer accepting new thesis students.

Website | Email | PubMed Articles | Geisel Profile

Scott A. Gerber, Ph.D.

scott_gerber.png

Scott Gerber

Kenneth E. and Carol L. Weg Distinguished Professor of Molecular and Systems Biology, and Professor of Biochemistry and Cell Biology, Associate Director of QBS Program

Office: 734 Rubin

Phone: 603-653-3679 


Research in the Gerber Lab is focused on developing and using modernproteomics methods to understand the mechanisms by which dysregulated mitotic kinases, such as Aurora kinase A, contribute to the onset and maintenance of cancers.

Website | Email | PubMed Articles

 | Geisel Profile

Erik E. Griffin, Ph.D.

erik_griffin.png

Erik Griffin

Associate Professor of Biological Sciences

Office: 348 Life Sciences Center

Phone: 603-646-8269


We are interested in understanding how protein concentration gradients are generated in the cytoplasm and contribute to cell fate specification during development. We combine live imaging, biochemical and genetic approaches to study a series of cytoplasmic protein gradients that help pattern the early C. elegans embryo. 


No longer accepting new thesis students.

Website | Email | PubMed Articles

 | Faculty Profile

Mary Lou Guerinot, Ph.D.

mary_lou_guerinot.png

Mary Lou Guerinot

Ronald and Deborah Harris Professor in the Sciences, Professor of Biological Sciences, and Molecular and Systems Biology

Office: 325 Life Sciences Center

Phone: 603-646-2527


My principal expertise and research interests are in the area of metal transport and regulation of gene expression by metals. Plants are the major point of entry for essential metals into the food chain, so our work is laying the foundation for crops that offer sustainable solutions for malnutrition.


No longer accepting thesis students.

Website | Email | PubMed Articles | Faculty Profile

Allan Gulledge, Ph.D.

allan_gulledge.jpg

Allan Gulledge

Associate Professor of Molecular and Systems Biology

Office: 601 Vail

Phone: 603-646-5249

Our research focus is the cerebral cortex, an area of the brain that serves as the biological substrate for the higher cognitive functions that define us as individuals. We wish to identify the mechanisms by which individual cortical neurons process and transmit information within the cortical circuit. To accomplish this we employ electrical and optical recording techniques that measure neuronal activity in neocortical neurons under a variety of experimental conditions.


Website | Email | PubMed Articles

 | Geisel Profile

Marnie E. Halpern, Ph.D.

marnie_halpern.jpg

Marnie Halpern

Professor and Chair, Molecular and Systems Biology

Andrew Thomson, Jr., MD 1946 Professor

Office:   725A Remsen

Phone:   603-646-5251

The Halpern lab uses the zebrafish model to examine how left-right differences in the vertebrate brain arise and their functional significance. Using genetic, genomic, transgenic and optogenetic methods, they aim to map, manipulate, and monitor activity of neural pathways to understand their influence on behavior.

Email | PubMed Articles  | Geisel Profile

Bing He, Ph.D.

bing_he.jpg

Bing He

Associate Professor of Biological Sciences

Office: 350 Life Sciences Center

Phone: 603-646-2649 


I am interested in how complex tissue and organ structures arise from simple tissue primordia. Using an interdisciplinary approach combining genetics, cell biology, biophysics and mathematical modeling, we seek to understand how developmental patterning information controls individual cell shape changes and how they are integrated into stereotyped tissue-scale deformations.


Website | Email 

| Faculty Profile

H. Robert Frost, Ph.D.

 

H. Robert Frost, Ph.D.

Frost

Assistant Professor, Biomedical Data Science, and Molecular and Systems Biology

 

Office:  Rubin 704

Phone:  603-667-1884

My research focuses on the development of bioinformatics and biostatistics methods for analyzing high-dimensional genomic data with a specific emphasis on single cell transcriptomics. Areas of statistical interest include dimensionality reduction (e.g., PCA), hypothesis aggregation (e.g., gene set testing), and penalized estimation (e.g., LASSO penalized regression). Areas of biological interest include cell signaling, tissue-specific gene activity, tumor immunology, and cancer prognosis prediction.

Website   Email   PubMed Articles   Geisel Profile

 

Anne G. Hoen, Ph.D., M.Phil.

anne_hoen.jpg

Anne Hoen

Associate Professor of Epidemiology, Biomedical Data Science, and Microbiology and Immunology

Office: 888 Rubin

Phone: 603-653-6087


Our work is on the development of the microbiome in infants and children, and the associations between environmental and dietary exposures, the microbiome, and risk for infectious diseases and other health outcomes.


 

Website | Email | PubMed Articles

 | Geisel Profile

Deborah A. Hogan, Ph.D.

deborah_hogan.png

Deborah Hogan

Professor of Microbiology and Immunology, Thomas S. Kosasa Professor at Geisel School of Medicine

Office: 208 Vail

Phone: 603-646-5371

We study the mechanisms by which bacterial and fungal pathogens regulate virulence determinants within multicellular populations, within microbial communities and in the context of mammalian hosts.


 

Website | Email | PubMed Articles

 | Geisel Profile

Dionna M. Kasper

kasper_2.jpg

Kasper

Dionna M. Kasper, Ph.D.

Assistant Professor of Molecular and Systems Biology

Office:  706A Remsen

Phone:   603-646-5254

The Kasper lab investigates how vascular endothelial cells adopt alternate cell fates to become hematopoietic stem cells or lymphatic progenitors. We use a combination of live imaging, genetic and biochemical approaches, and high-throughput 'omic' technologies in the zebrafish embryo to dissect how epigenetic to posttranslational gene regulatory mechanisms control these important developmental decisions.

Email | PubMed

Arminja N. Kettenbach, Ph.D.

arminja_kettenbach.png

Arminja Kettenbach

Professor of Biochemistry and Cell Biology

Office: 763 Rubin


Phone: 603-653-9067 


Research in the lab focuses on understanding the molecular mechanisms by which phosphatases contribute to phosphorylation-dependent signal transduction in mitosis. We use cell biological, biochemical, and proteomics approaches to decipher the connectivity and complexity of these signaling events in normal and cancer cells. 


Website | Email

 | Geisel Profile

C. Robertson McClung, Ph.D.

c._robertson_mcclung.png

C. Robertson McClung

Patricia F. / William B. Hale 1944 Professor in the Arts and Sciences, Professor of Biological Sciences

Office: 323 Life Sciences Center

Phone: 603-646-3940


The ability of an organism to measure time is the product of a cellular biological clock. Many phenomena controlled by the biological clock cycle on a daily basis and are called circadian rhythms. My goal is to understand the genetic and biochemical mechanisms by which a plant measures time and uses that temporal information to regulate gene expression and cellular physiology.


No longer accepting new thesis students.

Website | Email | PubMed Articles

 | Faculty Profile

Aaron McKenna, Ph.D.

aaron_mckenna.jpg

Aaron McKenna

Assistant Professor of Molecular and Systems Biology

Office:  658 Williamson Translational Research Building

Phone:  603-650-1866

My lab is interested in how cells grow and divide to form complex structures, such as the transformation from the zygote to an adult human or from a transformed cell into a tumor mass. To study these processes, we develop technologies to trace pattern of cell divisions which recovers the lineage of each cell. This information can be combined with other measures of cell state such as single-cell transcriptomic data to develop a rich picture of how choices are made in development and how this process is dysregulated in diseases such as cancer.

Website | Email | PubMed Articles

James B. Moseley, Ph.D.

james_moseley.jpg

James Moseley

Professor of Biochemistry and Cell Biology

Office: 412 Remsen

Phone: 603-646-5202

Many cell types delay cell cycle transitions until they reach a critical size threshold. We are studying the cellular mechanisms that measure size, and their role in coordinating cell growth and division.

Website | Email | PubMed Articles 

| Geisel Profile

Larry C. Myers, Ph.D.

lawrence_myers.png

Lawrence Myers

Associate Professor of Medical Education, and Biochemistry and Cell Biology

Office: Vail 412

Phone: 603-650-1198

The goal of our lab is to determine how genetic and epigenetic information in eukaryotic cells is used to regulate the transcription of genes. We are particularly interested in how human fungal pathogens utilize epigenetic regulatory strategies to switch phenotypes and facilitate virulence.

Website | Email | PubMed Articles

 | Geisel Profile

Carey D. Nadell, Ph.D.

carey_d._nadell.jpg

Carey D. Nadell

Associate Professor of Biological Sciences

Office: 326 Life Sciences Center

Phone: 603-646-1019


Bacteria often live in groups, called biofilms, where they cooperate and compete using a broad spectrum of interactive behaviors. These interactions are central to how bacteria evolve, and how they cause disease. We use molecular genetics, confocal microscopy, computational simulations, and evolutionary analysis to understand the mechanisms and biofilm-scale consequences of bacterial cell-cell interaction.


Website | Email | PubMed Articles

 | Faculty Profile

Benjamin D. Ross, Ph.D.

ross_portrait1_copy.jpg

ben ross

Assistant Professor of Microbiology and Immunology

Office:  504A Vail Building

Phone:  603-646-5388

The bacteria resident in the human gastrointestinal tract (the gut microbiota) potently influence diverse aspects of human health, including immunity. However, the forces that govern the composition of the gut microbiota are poorly understood. Our work focuses on a mechanistic, ecological, and evolutionary understanding of how interbacterial interactions between members of the dominant Gram-negative bacteria in the gut, the Bacteroidales, modulate the composition of the microbiota. The Bacteroidales utilize a contact-dependent toxin-delivery system known as the type VI secretion system (T6SS) to kill neighboring cells. We study the impact of this pathway on the microbiota and how bacteria adapt to defend against T6SS-mediated antagonism, using a combination of bacterial genetics, biochemistry, metagenomics, and germ-free mouse models. We are also interested in understanding why Bacteroidales abundance is depleted in individuals with cystic fibrosis, with the goal of improving health through restoration of these bacteria.

Email | PubMed Articles

Daniel Schultz, Ph.D.

daniel_schultz.jpg

Daniel Schultz

Assistant Professor of Microbiology and Immunology

Office: 206 Vail

Phone: 603-646-5390

The Schultz lab develops quantitative approaches to study the emergence, operation and optimization of the gene networks that control cell responses in bacteria, with a focus on antibiotic resistance mechanisms. We combine mathematical modeling, bioinformatics, experimental evolution and microfluidics to analyze how the cell controls the expression of resistance genes during drug responses. We strive to guide innovation in clinical therapies by uncovering the selective pressures that shape the evolution of antibiotic resistance in natural environments.

Website | Email | PubMed Articles

 | Geisel Profile

Bruce Stanton, Ph.D.

bruce_stanton.png

Bruce Stanton

Andrew C. Vail Memorial Professor

Professor of Microbiology and Immunology, and of Physiology

Office: 615 Remsen

Phone: 603-646-5395

Our laboratory studies the genetic disease Cystic Fibrosis. In particular we study host pathogen interactions between bacteria and human airway epithelial cells and the interactome of CFTR and how interacting proteins regulate CFTR trafficking. We also examine how environmental toxins, in particular arsenic, cause and contribute to respiratory and diseases and inflammation.


Website | Email | PubMed

 | Geisel Profile

Mark Sundrud, Ph.D.

screen_shot_2022-07-27_at_1.57.05_pm.png

Sundrud, Mark

Professor of Medicine, and of Microbiology and Immunology

Office:  Borwell 630W

The Sundrud laboratory is focused on the identification and regulation of pro-inflammatory T cell subsets that are involved in the development and persistence of chronic inflammatory disorders. The laboratory integrates the use of clinical human tissue samples, primary T cell culture techniques, mouse models of autoimmunity, and molecular biology and biochemistry to forge new insight into the development and pathogenesis of inflammation. The lab is particularly interested in metabolic and stress response pathways that control T cell development and function.

Website | Email | PubMed Articles  | Geisel Profile

Surachai Supattapone, M.D., Ph.D., D.Phil.


surachai_supattapone.jpg

Surachai Supattapone

Professor of Biochemistry and Cell Biology, and Medicine

Office: 311 Vail

Phone: 603-646-5212

Our lab investigates the molecular mechanisms responsible for the propagation of protein misfolding in neurodegenerative diseases, with special focus on infectious mammalian prions.  We also use whole genome CRISPR libraries to study various areas of cell biology in mammalian cells.

 

Website | Email | PubMed Articles

 | Geisel Profile

Xiaofeng Wang, Ph.D.

xiaofeng_wang.png

Xiaofeng Wang

Assistant Professor of Molecular and Systems Biology

Office: 632 Rubin

Phone:  603-653-9974


Our work focuses on cancer epigenetics. We are particularly interested in studying a family of chromatin remodeling complexes, which are frequently mutated in a variety of human cancers. Our work is aimed to understand how these mutations cause cancer, focusing on the regulation of chromatin structure dynamics (epigenomics) and chromatin remodeler protein complex assembly, as well as using genetic and chemical screens to identify potential therapeutic targets in human cancers. 


Email | PubMed Articles

 | Geisel Profile  | Website

Michael L. Whitfield, Ph.D.

michael_whitfield.png

Michael Whitfield

Professor of Molecular and Systems Biology

Chair of Biomedical Data Sciences

Office: 330 Williamson Translational Research Building

Phone: 603-650-1105 


The complexities of biological systems can now be studied with genome-wide approaches that take a global view of the underlaying biology. 


Website | Email 

| Geisel Profile

Siming Zhao, Ph.D.

Siming Zhao, Ph.D.

Siming Zhao Ph.D.

Assistant Professor of Biomedical Data Sciences, and Dartmouth Cancer Center

Cancer Biology Program

Office:   Rubin Building 705

Phone:  (603) 646-5723

Dr. Zhao's research focuses on studying the genetic etiology of human diseases, in particular, cancer.  Her lab develops computational methods and tools to analyze large-scale genomic datasets, aiming to translate data into biological insights. Specific areas of interest include modeling of mutation selection in cancer, genotype-phenotype association analysis, integration of multiple types of genomic datasets for disease gene discovery and single cell genomics.

Website | Email | PubMed Articles | Geisel Profile

Olga Zhaxybayeva, Ph.D.

olga_zhaxybayeva.jpg

Olga Zhaxybayeva

Associate Professor of Biological Sciences

Office: 333 Life Sciences Center

Phone: 603-646-8616


My lab's research focus is to better understand evolution of microbes through computational analyses of genomic and metagenomic data.


Website | Email | PubMed Articles | Faculty Profile