Structural Biology Faculty

Allan Gulledge, Ph.D.

allan_gulledge.jpg

Allan Gulledge

Associate Professor of Molecular and Systems Biology

Office: 601 Vail

Phone: 603-646-5249

Our research focus is the cerebral cortex, an area of the brain that serves as the biological substrate for the higher cognitive functions that define us as individuals. We wish to identify the mechanisms by which individual cortical neurons process and transmit information within the cortical circuit. To accomplish this we employ electrical and optical recording techniques that measure neuronal activity in neocortical neurons under a variety of experimental conditions.


Website | Email | PubMed Articles

 | Geisel Profile

Bing He, Ph.D.

bing_he.jpg

Bing He

Associate Professor of Biological Sciences

Office: 350 Life Sciences Center

Phone: 603-646-2649 


I am interested in how complex tissue and organ structures arise from simple tissue primordia. Using an interdisciplinary approach combining genetics, cell biology, biophysics and mathematical modeling, we seek to understand how developmental patterning information controls individual cell shape changes and how they are integrated into stereotyped tissue-scale deformations.


Website | Email 

| Faculty Profile

Michael B. Hoppa, Ph.D.

michael_hoppa.jpg

Michael Hoppa

Associate Professor of Biological Sciences, Co-Director of Integrative Neuroscience at Dartmouth Graduate Program

Office: 324 Life Sciences

Phone: 603-646-8850


We explore the molecular mechanisms that control ion channel localization, expression and function in primary neurons using quantitative optical approaches in combination with genetic and biochemical tools. 


 

Website | Email | PubMed Articles | Faculty Profile

F. Jon Kull, Ph.D.

f._jon_kull.jpg

F. Jon Kull

Rodgers Professor of Chemistry, and Biochemistry and Cell Biology

Dean, Guarini School of Graduate and Advanced Sciences

Office: 304 Burke

Phone: 603-646-1552 


Our laboratory uses biophysical techniques to study protein structure and function. Our goal is to understand at a fundamental level the conformational changes that occur in proteins as they complete the various cellular functions. 


Email | Faculty Profile

Wei-Lih Lee, Ph.D.

wei-lih_lee.jpg

Wei-Lih Lee

Professor of Biological Sciences

Office: Class of 1978 Life Sciences Center, Room 224

Phone: 603-646-8706

I am interested in understanding how eukaryotic cells organize, position, and segregate their organelles during asymmetric cell divisions. We combine classical genetics and live-cell microscopy with biochemical and biophysical techniques to elucidate the molecular pathways that regulate the microtubule cytoskeleton and the motor proteins responsible for organellar interaction and positioning in our model system budding yeast.

Email | Faculty Profile

Dean R. Madden, Ph.D.

20161116-dean-madden_2.jpg

Dean Madden

Professor of Biochemistry and Cell Biology

Dartmouth Vice Provost for Research

Office: 408A Vail

Phone: 603-646-5197

Structure and function of ion channels and proteins that regulate their intracellular trafficking.


Website | Email | PubMed Articles

 | Geisel Profile

Dale F. Mierke, Ph.D.

dale_mierke.jpg

Dale Mierke

Professor of Chemistry, and Biochemistry and Cell Biology

Office: 202 Burke

Phone: 603-646-1154


Develop molecular inhibitors of specific protein-protein interactions which may find use as physiological tools or eventual therapeutic agents, using the structural features as determined from many experimental (mainly NMR) and computational techniques.


Email | PubMed Articles

 | Faculty Profile

Ekaterina V. Pletneva, Ph.D.

ekaterina_pletneva.png

Ekaterina Pletneva

Associate Professor of Chemistry, and Biochemistry and Cell Biology

Office: 114 Burke

Phone: 603-546-2501

Our studies examine the interplay between protein dynamics and redox reactivity in signaling transformations and address fundamental problems in reaction mechanisms, coordination chemistry and biology.

Website | Email 

| Faculty Profile

Michael J. Ragusa, Ph.D.

michael_ragusa.png

Michael Ragusa

Associate Professor of Chemistry, and Biochemistry and Cell Biology

Office: 221 Burke

Phone: 603-646-9066

Autophagy is a catabolic cellular process capable of degrading large cellular material including organelles and aggregates. We are interested in elucidating the molecular mechanisms of autophagy through a combination of X-ray crystallography, small angle X-ray scattering and biochemistry.

Website | Email | PubMed Articles

 | Faculty Profile

PAUL J. ROBUSTELLI, PH.D.

paul_robustelli.jpg

Paul Robustelli

Assistant Professor of Chemistry, and Biochemistry and Cell Biology

Office:  203 Burke

Phone:  603-646-2270

The Robustelli laboratory integrates computational methods with biophysical experiments to obtain atomic-level descriptions of the functional motions of biomolecules, with a particular interest in intrinsically disordered proteins.  We aim to use insights from atomistic molecular simulations to understand, predict and design binding interactions of dynamic of disordered proteins and to elucidate general principles governing molecular recognition in dynamic systems.  A current focus of our laboratory is understanding the thermodynamic driving forces of small molecule ligands binding to disordered protein sequences, with the goal of providing new avenues to therapeutic interventions in diseases associated with disordered protein dysfunction through the rational design of small molecule and biologic inhibitors.

Website | Email | PubMed Articles

Daniel Schultz, Ph.D.

daniel_schultz.jpg

Daniel Schultz

Assistant Professor of Microbiology and Immunology

Office: 206 Vail

Phone: 603-646-5390

The Schultz lab develops quantitative approaches to study the emergence, operation and optimization of the gene networks that control cell responses in bacteria, with a focus on antibiotic resistance mechanisms. We combine mathematical modeling, bioinformatics, experimental evolution and microfluidics to analyze how the cell controls the expression of resistance genes during drug responses. We strive to guide innovation in clinical therapies by uncovering the selective pressures that shape the evolution of antibiotic resistance in natural environments.

Website | Email | PubMed Articles

 | Geisel Profile

Surachai Supattapone, M.D., Ph.D., D.Phil.


surachai_supattapone.jpg

Surachai Supattapone

Professor of Biochemistry and Cell Biology, and Medicine

Office: 311 Vail

Phone: 603-646-5212

Our lab investigates the molecular mechanisms responsible for the propagation of protein misfolding in neurodegenerative diseases, with special focus on infectious mammalian prions.  We also use whole genome CRISPR libraries to study various areas of cell biology in mammalian cells.

 

Website | Email | PubMed Articles

 | Geisel Profile