Dartmouth Events

Engineering Drug Delivery Devices and Bioresorbable Pacemakers

Seminar with Raudel Avila, PhD Candidate in Mechanical Engineering, Northwestern University, on the mechanics of bioelectronics.

2/13/2023
3:30 pm – 4:30 pm
Online
Intended Audience(s): Public
Categories: Lectures & Seminars

ZOOM LINK
Meeting ID: 977 7792 8244
Passcode: 813105

In recent years, bioelectronics with advanced monitoring capabilities have garnered considerable interest as a means of expanding patient care beyond traditional hospital and clinic settings. These soft, bioresorbable devices, many of which are wireless, have the potential to replace bulky, rigid, and wired medical technologies by matching or exceeding their performance.

In this seminar, I will delve into several examples of my research contribution and accomplishments in the field, including the modeling and development of implantable bioelectronics that can monitor physiological signals, administer drugs, and pace the heart. First, we will examine drug delivery systems with electrochemical actuation, which provide programmable volume and flow rates in miniaturized form factors. This technology is particularly useful for in vivo pharmacological experiments in freely moving animals where flow rate control and delivery time are important. I will present an analytical model that accounts for all the variables that influence drug delivery in non-dimensional parameters such as pressure, volume, and microfluidic channels. By varying these non-dimensional parameters, researchers can create a scalable relationship for the volume and flow rate, as well as delivery time. This model offers researchers greater flexibility when designing programmable drug delivery systems for neuroscience and clinical research.

Next, we will consider a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm. This device completely dissolves and is cleared by natural biological processes after a defined operating timeframe. I will demonstrate that this device is effective in pacing hearts of various sizes in mouse, rat, rabbit, canine, and human cardiac models, with tailored geometries and operating timeframes, powered by wireless energy transfer. This approach overcomes the key disadvantages of traditional temporary pacing devices and may serve as the foundation for the next generation of postoperative temporary pacing technology.

For more information, contact:
Ashley Parker

Events are free and open to the public unless otherwise noted.